Novel Frequency-Based Approach to Analyze the Stability of Polynomial Fractional Differential Equations
نویسندگان
چکیده
This paper proposes a novel approach for analyzing the stability of polynomial fractional-order systems using frequency-distributed fractional integrator model. There are two types frequency and temporal stabilization methods that global semi-global conditions attain sum-of-squares (SOS) method. Substantiation asymptotical complicated systems. According to recent studies on nonlinear systems, this concentrates with any degree nonlinearity. Global obtained (PFD) via technique employed. method can be effective in where linear matrix inequality (LMI) is incapable response. solve non-convex SOS-designed equations design framework key ideas avoid conservative problems. A Lyapunov function determined address problem PFD established sufficiently expressed conditions. The main goal article present an analytical based optimization order models form convert it into problem, by changing solution system improved.
منابع مشابه
A Lyapunov approach to the stability of fractional differential equations
Lyapunov stability of fractional differential equations is addressed in this paper. The key concept is the frequency distributed fractional integrator model, which is the basis for a global state space model of FDEs. Two approaches are presented: the direct one is intuitive but it leads to a large dimension parametric problem while the indirect one, which is based on the continuous frequency di...
متن کاملCascade of Fractional Differential Equations and Generalized Mittag-Leffler Stability
This paper address a new vision for the generalized Mittag-Leffler stability of the fractional differential equations. We mainly focus on a new method, consisting of decomposing a given fractional differential equation into a cascade of many sub-fractional differential equations. And we propose a procedure for analyzing the generalized Mittag-Leffler stability for the given fractional different...
متن کاملStudy on stability analysis of distributed order fractional differential equations with a new approach
The study of the stability of differential equations without its explicit solution is of particular importance. There are different definitions concerning the stability of the differential equations system, here we will use the definition of the concept of Lyapunov. In this paper, first we investigate stability analysis of distributed order fractional differential equations by using the asympto...
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولStability of Solutions to Impulsive Caputo Fractional Differential Equations
Stability of the solutions to a nonlinear impulsive Caputo fractional differential equation is studied using Lyapunov like functions. The derivative of piecewise continuous Lyapunov functions among the nonlinear impulsive Caputo differential equation of fractional order is defined. This definition is a natural generalization of the Caputo fractional Dini derivative of a function. Several suffic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2023
ISSN: ['2075-1680']
DOI: https://doi.org/10.3390/axioms12020147